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a b s t r a c t

After a decade of astonishing growth of wind power capacity worldwide, sustainable utilization of wind
energy resources has become an issue of utmost importance. For a comprehensive assessment of the
environmental sustainability of a wind power, basic emergy flow diagram and emergy indices are
presented in this paper to aggregate various renewable/nonrenewable local resources and purchased
economic inputs associated with a wind power system, with concrete illustration by a case study of a
modern wind farm in Guangxi, China. It is revealed that the solar transformity of wind electricity is the
lowest among typical electricity generation technologies. Emergy-based indices are then calculated to
provide integrated information of the investigated wind farm from an ecological point of view.
Comparison between the results with existing data for other renewable energy systems reflects the
substantial advantages of wind power technology over solar thermal power and photovoltaic technol-
ogies in terms of sustainability and ecological cost. Nevertheless, biomass-derived fuels, especially biogas
by anaerobic digestion, show a better ecological performance and environmental sustainability than
wind and solar technologies. In addition, potential for improvements of Chinese wind farm are identified
by optimization effort in human labor, land use and waste treatment.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the increasing concerns over surging energy demand and
climate change, the world is paying much more attention on
sustainable energy future. Renewable energy can serve as feasible
and environmentally responsible alternatives to reduce dependence
on fossil fuels, enhance flexibility of local power supply, and provide
tremendous potential for mitigating climate change [1].The transition
for renewable energy substituting fossil fuel in the global energy mix
is happening unprecedentedly fast. According to the International
Energy Agency [2], the use of renewable energy will triple between
2008 and 2035 with a share in electricity supply rising from 19% to
32%. Compared with other renewable resources, wind power has
achieved maturity of commercially integrating into the energy
market. Annual growth rate of cumulative wind power capacity
averaged 30% in the last decade, bringing global installed capacity
to 197 GW by the end of 2010 [3]. In 2011, worldwide wind capacity
sets a new record by adding another 42 GW, the largest among all
renewable technologies [3].

China, on its way of industrialization and urbanization, sur-
passed US to be the world's largest energy consumer [4] mainly
dependant on coal, which is a key contributor to escalating
environmental deterioration, such as greenhouse effect, acid rain,
air pollution, etc. To address challenges both from environment
and energy supply, China pledged to cultivate a greener economy
by emphasizing on the energy efficiency and diversifying energy
supply structure by renewable energies. In its 12th Five-Year-Plan,
the Chinese government has vowed to increase the proportion of
non-fossil fuels to 15% of primary energy consumption and reduce
carbon dioxide emissions per unit of GDP by 40–45% from the
2005 level to 2020 [5]. In this context, wind power proves to be
one of the most attractive solutions to meet China's goal of
sustainable development. The total exploitable capacity of inland
and offshore wind power in China is about 700–1200 GW (at a
height of 10 m), according to China Meteorological Administration
[6]. During the 11th Five-Year-Plan (FYP), the Chinese government
has issued a series of polices to promote the development of wind
power industry, including supporting localization of wind power
equipment, establishing mandatory institution of wind power
accessed to the grid, formulating mandatory targets of wind power
quotas, and providing subsidy and tax support [7,8]. Recently,
China became the world's biggest wind power market, reaching a
total of 42.3 GW in 2010, with its installed capacity doubling every
year between 2006 and 2009. However, wind power in a time of
rapid growth has also exposed many problems in the economics,
technologies and policies. In order to guarantee a sustainable
future, it is very important to conduct a comprehensive systems
accounting on wind power, especially while wind power in China
is not cost competitive to coal-based thermal power for the
time being.

Extensive studies on the evaluation of various renewable
energy sources and industrial systems in China have been carried
out [8–14]. Previous studies focused on the net energy consump-
tion and associated greenhouse gas emissions of wind power
system using life cycle assessment (LCA) [15–23]. LCA is a techni-
que to evaluate the environmental impacts throughout the whole
life-cycle of a product or system. But the above studies, indicating
a considerably favorable energy return and GHG mitigation, have
certain limitations in assessing the overall environmental perfor-
mance of wind turbines. None of these studies took account of the
resource use due to human labor and environmental work.
Particularly, the potential environmental, social and economic
impacts of wind power, although currently remain controversial
and under debate, should not be ignored [24]. Developing envir-
onmental conscious wind power system requires a more inte-
grated analysis, since its potential negative impacts will be
amplified rapidly as wind power continues the seemingly unham-
pered expansion and turbine sizes get larger in the near future. It
is imperative to analyze the sustainability of wind turbines
comprehensively.

“Sustainability” is derived from the Latin “sustinere”, for which
dictionary provided more than ten meanings, with the main ones
being to “maintain”, “support” or “endure” [25]. As a result,
“sustainability” is explained as “the capacity to endure” in one
dictionary [26]. The definition of sustainability is widely quoted as
a part of the concept “sustainable development”, which was
defined by Brundtland Commission of the United Nations in
1987 as “development that meets the needs of the present without
compromising the ability of future generations to meet their own
needs” [27]. However, the reality of this definition of sustainable
development in the total biosphere as a compromise of different
political wills is critically examined by Svirezhev and Svirejeva-
Hopkins [28]. In assessment of the sustainability of a system,there
are at least three aspects to be taken into account [29,30]:
economic cost that determines the investment, operation and
maintenance of the system, input/output efficiency that is essen-
tial for scarce resource allocation, and the “ecological cost” (firstly
defined as “the total consumption of the exergy of natural
resources in all the relative processes that lead to the certain
product” by Szargut [31]) of restoration that is important to assess
the interaction between biosphere and human society. There is no
generally accepted evaluation method to assess sustainability.
Nevertheless, these methods mentioned above have their own
advantages that provided us with an integrated picture of the
sustainability of a system from different perspectives.

In this context, thermodynamic concepts and models in ecolo-
gical economics can identify the relevant constraints and scarcities
of the ultimate driving forces [32] and make bridges between
energy, economic and environment hence, can be regarded as
appropriate tools to describe the sustainability of a complicated
production system [33]. As one of the most promising methods in
ecological economics, emergy analysis first introduced by Howard
Odum in systems ecology [34], can be used to evaluate integrated
relationship between the economy system and its environment.

For this purpose, emergy analysis can serve as a valid and
complementary approach to determine the environmental sus-
tainability of renewable technologies [30,35–41]. Emergy is
defined as the sum of available energy consumed in transforma-
tions directly and indirectly to make a product or service [42].
Solar energy is regarded as the primary energy source that drives
earth's various ecological and economical systems. By converting
all forms of energy, resources and human services into a common
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basis of solar emjoules (abbreviated seJ), the major inputs from
the human economy and the contribution of ecosystem can be
integrated to analyze the environmental performances and to
support policy recommendations. Emergy inflows driving a system
are categorized by different characteristics, i.e. renewable and
nonrenewable resources, locally available versus purchased inputs
from outside. A set of emergy indices can be used to evaluate the
sustainability and thermodynamic efficiency of the whole system,
as well as its interactions with external environment. The general
concepts, principles and methodologies of emergy analysis, as well
as the emergy-based indices, have been extensively developed and
intensively illustrated (e.g.,Odum [42], and developed by Brown
and Ulgiati [43], JØrgensen [44], Bakshi [45], and Chen [46]).

Recently, emergy method has been widely used to evaluate
ecological economic systems, with extensive literatures appeared on
assessing various sectors including industry(e.g., [47–51]), construction
(e.g., [52–59]), agricultural systems(e.g., [38,39,60–77]), and hybrid
systems (e.g., [29,30,78,79]) with different scales such as regional
scales (e.g.[47,77,80–87]), national scales (e.g., [62,88–91]) and global
scales (e.g.[42,92,93]). As for emergy analysis of renewable energy
technologies, most studies focused on evaluating the biomass-derived
fuels [38,39,67,75,95–98], while few studies on other renewable power
generation. Zhang et al. [99] evaluated the performance of a concen-
trating solar power (CSP) system by embodied energy and emergy
analyses. Paoli et al. [100] performed emergy analysis to compare
the sustainability and efficiency of two solar technologies. The results
showed that solar thermal plant was more sustainable than the
photovoltaic (PV) one, due to the high dependency of PV on external
and imported resources. More recently, Brown et al. [101] discussed a
common framework consistent with both LCA and emergy synthesis
to calculate performance indicators. Two case studies, namely CdTe PV
system and oil-fired power plant, were investigated by a revised
operational definition of the emergy yield ratio (EYR). Nevertheless,
studies addressed to the evaluation of modern wind farms based on
emergy are still lacking in open literature.

This paper aims to fill the gap by using emergy analysis to
assess the performance and environmental sustainability of a
typical wind farm in Guangxi Province, China. And the emergy-
based indices including transformity, percent renewable, emergy
yield ratio, environmental loading ratio, and emergy sustainability
index were compared with other energy production systems to
shed insight into the outstanding environmental sustainability of
wind power technology. The results of emergy analysis can serve
as ecological indicators for the environmental performance of
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wind farms and lead to policy recommendations for further wind
power development in China.
2. Materials and methods

2.1. Emergy analysis

Emergy analysis is a method of environmental accounting to
illustrate the relative position of different energy carriers in the
thermodynamic hierarchy of the biosphere. This top-down eco-
centric approach measures all the inputs required to sustain a
process on a common basis as solar emergy. In this way, different
kinds of commodities, services and environmental work can be
quantified by means of a transformation ratio called transformity
to represent the conversion efficiency of a system in the global
energy hierarchy [102]. It is defined as “the emergy of one type
required to make a unit of energy of another type” [42] with the
unit of solar emjoules per joule (abbreviated seJ/J). Thus, the total
emergy of any product or service can be calculated by multiplying
its raw amount by its transformity.

Solar transformities for a wide variety of goods and services can
be obtained from previous studies to facilitate the emergy analysis.
However, transformity of a given object of the same category may
have different values due to the specific geographic location and
production process. In this paper, transformities of materials and
resources associated with the investigated wind farm are mainly
adopted from Zhou [103], as the first effort in embodied ecological
elements accounting of Chinese national economy by combining
the input–output analysis with ecological thermodynamics. This
database can effectively avoid choosing dispersed and inappropri-
ate transformities, and thus guarantee the accuracy of emergy
analysis in this study.

2.2. Emergy evaluation procedure

The emergy evaluation procedure of wind farm consists of the
following steps. Firstly, evaluation starts with overview diagraming
to identify sources and pathways in the interactive networks of a
system. Diagrams are constructed of special emergy language sym-
bols invented by Odum [34]. An emergy systems diagram of wind
power plant is shown in Fig. 1. Since a wind farm system contains
both natural ecosystem and artificial engineering works associated
with renewable and nonrenewable energy and resource inputs,
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Table 1
Main characteristics of the wind power plant.

Turbine type SEC-1250 kW
Turbine number 24
Blade diameter 64 m
Hub height 68 m
Mean wind speed (at hub height) 7.22 m/s
Average wind power density 248.73 W/m²
Working wind speed 3.0 m/s–20 m/s
Time of working wind speed 8269 h/yr
Total land area 8.0 km²
Permanent personnel 18
Operating lifetime 20 years
Annual electricity output 6.54E+07 kW h
Capacity factor 24.90%
Project developer China Huadian Corporation
Greenhouse gas emissions 0.002 t CO2-eq/GW h[11]

Employment 0.6/MW
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all these energy and material can be classified and aggregated, as
shown in Fig. 2. The second step is to establish an emergy evaluation
table listing all the items and data to be considered in the system.
The items include not only initial material and capital investment for
plant construction and the continuous inputs for operation and
maintenance, but also nonresource factors such as human labor
and services. Different units of actual flows in the table are multiplied
by the corresponding transformities to convert them into solar
emergy. The final step is to calculate emergy indices based on the
evaluation table. These indices have been shown to be particularly
useful to promote a sustainable pattern for human-dominated
systems, where many influencing factors are adjustable and choices
have to be made cautiously [104].

2.3. Emergy-based indices

All the system inputs are generally categorized into three types:
local renewable resources (R), such as sunlight, wind and rain; local
nonrenewable resources (N) refers to those available in limited
amount within system boundary, such as soil erosion and ground-
water, etc.; purchased input (F) includes those bought in from the
economy, such as electricity, machinery and human labor, etc. As is
shown in Fig. 2, the F group is sometimes further divided into
purchased renewable input (FR) and purchased nonrenewable input
(FN). The total emergy use (U) is equal to the sum of emergy inflows
(N+R+F), which determines the total emergy cost driving the system.
Based on the above characteristics of emergy flows, several emergy-
based indices were proposed to investigate the efficiency and
sustainability of various systems [104,105].
(1)
 Percent renewable (PR)¼R/U is the percentage of emergy
inputs provided by renewable resources. A system using
higher fraction of renewable resources is considered more
sustainable in the long run.
(2)
 Emergy yield ratio (EYR)¼U/F measures the efficiency of a
process using purchased inputs to exploit local resources. The
higher the EYR， the larger the contribution to the economy
per unit of emergy invested.
(3)
 Environmental loading ratio (ELR)¼(N+F)/R, it is the ratio of
purchased and local nonrenewable resources to renewable
emergy inputs. It indicates the potential environmental impact
and ecosystem stress due to the transformation process.
(4)
 Emergy investment ratio (EIR)¼F/(R+N) is the ratio of invest-
ment from outside the system to local resources. EIR evaluates
whether the system is an economical user of emergy com-
pared to other alternatives. The system with a lower ratio is
more likely to prosper in the market.
(5)
 Emergy sustainability index (ESI)¼EYR/ELR measures the
potential contribution of a process per unit of environmental
loading. This index reflects the overall sustainability of a
production process, accounting for both economical and eco-
logical compatibility.
2.4. The case wind farm description

The wind farm is located in the Darong Mountain Resort (110111′
26″E–110115′23″E, 22151′36″N–22152′49″N) in Yulin City, Guangxi
Zhuang Nationality Autonomous Region, China. Main characteristics
of the wind farm are presented in Table 1. It is comprised of 24 wind
turbines each with a generating capacity of 1.25 MW, a hub height of
68m and a blade diameter of 64 m (total height 100 m). The whole
turbine, weighing approximately 156.8 t, is made up of three compo-
nents: rotors, nacelle, and tower. The nacelle sits atop the tower and
houses the generator, gearbox, main shaft, and yaw system, etc. The
rotor is bolted to the nacelle and is comprised of three blades, the hub
and the nose cone. Each blade is 31 m long, weighs 3.6 t and is made
of fiber glass and resin material. The tower is assumed to be 100%



Table 2
Emergy analysis of the Yulin wind farm during 20 years' lifetimea.

Note Classification Item Materials Raw amount Unit Solar transformity
(seJ/unit)

Ref. of transf. Solar emergy (seJ)

Local resources
1 100%R Wind (kinetic energy) 6.67E+14 J 2.45E+03 [42] 1.63E+18
2 100%N Land lossb 3.69E+03 m²/Year 8.00E+10 [42] 5.90E+15

Wind turbines
3 100%FN Rotor Resin and fiber glass 2.64E+02 T 8.07E+15 [103] 2.13E+18

Cast iron 1.90E+02 T 3.23E+15 [103] 6.12E+17
4 100%FN Nacelle Iron 4.82E+02 T 3.23E+15 [103] 1.56E+18

Steel 5.64E+02 T 3.23E+15 [103] 1.82E+18
Silica 9.60E+00 T 5.05E+15 [103] 4.85E+16
Copper 9.12E+01 T 1.01E+16 [103] 9.21E+17
Resin and fiber glass 5.28E+01 T 8.07E+15 [103] 4.26E+17

5 100%FN Tower Steel 2.11E+03 T 3.23E+15 [103] 6.81E+18

Substation
6 100%FN Transformer Silica 6.00E−01 t 5.05E+15 [103] 3.03E+15

Steel 1.08E+01 t 3.23E+15 [103] 3.49E+16
Copper 4.80E+00 t 1.01E+16 [103] 4.85E+16

7 100%FN Control system Computer 5.00E+00 5.77E+14 [103] 2.89E+15

Transportation [103]
8 100%FN Transport fuelc Diesel 1.58E+02 t 1.41E+15 [103] 2.23E+17

Building worksd

9 100%FN Tower foundation Concrete 8.33E+03 m³ 3.03E+14 [103] 2.53E+18
Steel bar 9.92E+02 t 4.82E+15 [103] 4.78E+18

10 100%FN Substation Concrete 1.64E+02 m³ 3.03E+14 [103] 4.97E+16
Steel bar 7.90E+00 t 4.82E+15 [103] 3.81E+16

11 100%FN Cable Copper and plastic 9.37E+01 t 8.11E+15 [103] 7.60E+17
12 20%FR,80%FN Power supply Electricity 6.48E+11 J 3.14E+05 [103] 2.03E+17
13 100%FR Water supply Reservoir water 2.70E+04 t 9.75E+09 [42] 2.63E+14

Operation and maintenance
14 100%FN Machine oil Lubricant 2.95E+01 t 1.55E+15 [103] 4.57E+16
15 100%FR Water supply Tap water 2.55E+04 t 4.65E+11 [103] 1.19E+16
16 100%FN Blade substitution Resin and fiber glass 8.64E+01 t 8.07E+15 [103] 6.97E+17
17 100%FN Generator substitutione Silicon 7.20E-01 t 5.05E+15 [103] 3.64E+15

Copper 7.92E+00 t 1.01E+16 [103] 8.00E+16
Steel 1.66E+01 t 3.23E+15 [103] 5.35E+16

Labor and servicesf

18 26%SR,74%SN Labor for operation and maintenance 3.29E+06 $ 5.87E+12 [107] 1.93E+19
19 26%SR,74%SN Construction manpower 5.05E+06 $ 5.87E+12 [107] 2.96E+19
20 26%SR,74%SN Cost of land occupation 1.29E+06 $ 5.87E+12 [107] 7.57E+18

Electricity production
21 Lifetime yield Electricity 4.71E+15 J

Total emergy use seJ 8.21E+19

Transformity of wind electricity 1.74E+04 seJ/J This study

a Data for the wind farm was provided by the developer [106]. All transformity values used in this study are relative to the most recent emergy baseline (total emergy
driving the biosphere: 15.83�1024 seJ/year. Calculation formulas are presented in details in Appendix A.

b Only a small area of turbine foundations is considered lost and taken out of production. Land loss is incorporated to take into account opportunity costs associated with
lost production. Vegetation nearby is assumed not affected.

c Major components were firstly transported from the manufacturer to Yulin City on the highway by diesel vehicles, and then from Yulin City to Darong Mountain,
a distance of 40 km. Transport activities related with regular maintenance of wind turbines were ignored due to the unavailable data.

d Building works mainly include the construction of tower foundations and substation. Tower foundations are made on site.
e During the average useful life of a wind turbine, it is supposed to substitute one blade and 15% of generator's component [19].
f Labor includes only those directly associated with plant construction, operation and maintenance.

Q. Yang et al. / Renewable and Sustainable Energy Reviews 25 (2013) 229–239 233
steel. Each wind turbine tower is connected to a 35 kW box-type
transformer. The tower is installed on flat lay-bay and anchored with a
foundation, which consists of filling up a 3.3 m deep hole with some
concrete reinforced by steel. All the detailed data and specifications of
this wind farm are provided by the developer, China Huadian
Corporation [106].

Wind resource in this farm was assessed using WAsP software,
developed by Risø National Laboratory, Denmark. The results
showed that annual mean wind speed is 7.26 m/s and the average
wind power density is 248.73 W/m² at hub height in Darong
Mountain. Working wind speed (3.0 m/s–20 m/s) was estimated
to be 8269 h per year. Based on the characteristic power curve and
hourly wind data of the location, the annual gross energy
production of the wind farm is calculated to be 6.54E+07 kW h
[106]. Thus the annual grid-connected electricity for each turbine
will be 2.73E+06 kW h with an availability of 2179.5 h/year on
average.
3. Results

3.1. Emergy of wind power plant

An emergy diagram referring to the wind power plant is shown
in Fig. 1. Dashed lines show the inflow of money from electricity
sale and the outflow of money for the purchase of goods and
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services. Based on the diagram, detailed emergy flows driving the
entire system are presented in Table 2. The evaluation table
incorporates different categories of resources, human labor, and
economic investment supplied for the concerned wind farm. The
solar emergy of each item is obtained by multiplying the raw
amount by its transformity.

The total emergy use (U) of the wind farm during 20 years'
lifetime is summed up to be 8.21E+19 seJ. As described in Section 2.4,
gross electricity output of the wind farm is calculated to be 4.71E
+15 J. Therefore, transformity of electricity produced by the wind
farm equals to 1.74E+04 seJ/J, indicating that wind power requires
1.74E+04 seJ of solar emergy to generate 1 J of electricity. The major
emergy inputs can be ascribed to labor and services, with labor for
operation and maintenance, construction manpower and the cost of
land occupation, taking up nearly 70% of total emergy input
(see Fig. 3). Total purchased input (F) amounts to 6.57E+19 seJ.
As for materials to install and maintain the wind power plant, wind
turbines (17.47%) and building works (10.19%) are the two largest
contributors to emergy inputs. The inventory of purchased resources
showed that steel plays a significant role in determining the emergy
cost of wind farm, accounting for 13.90% of total emergy use.
Renewable emergy input (R+FR+SR) reaches a total of 1.64E+19 seJ.
As the only local nonrenewable resource (N), land loss taken by
turbine foundations is a negligible amount of 5.90E+15 seJ.

3.2. Plant emergy indices

Emergy indices of the wind power plant are listed in Table 3.
Those indices show a relatively good sustainability performance
for wind power, which will be discussed later in Section 4. The
percentage renewable (PR) is 0.20 for wind power. The emergy
input from wind's kinetic energy for electricity generation
amounts to 1.63E+18 seJ during 20 years' lifespan (refer to
Table 2). Additional renewable fraction comprises natural water
and a substantial portion from outside the system, mainly in the
form of labor and services. Water from a nearby reservoir was used
for building works in a three months' construction period and tap
water production for plant operation and maintenance. As a
common practice in emergy analysis, labor and services are
divided into renewable (SR) and nonrenewable (SN) fractions. In
China, labor and services are considered 26% renewable, according
to the percentage of renewables (including traditional biomass
energy) driving Chinese economic system [38].
4. Discussion

4.1. Transformity comparison between various electricity production
systems

Transformity is a very important parameter, which can be used
to measure the overall efficiency of production systems from the
viewpoint of the biosphere. Those with greater transformities
demand more emergy to generate the same amount of product.
Transformity of electricity from modern wind farm is much lower
than other typical electricity production systems (see Fig. 4). It is
revealed that wind power transformity has a value much lower
than that from a CSP plant (6.39E+04 seJ/J) in China [99]. It can be
explained by the big difference of output capacity between a
30 MWwind farm and a 1.5 MW CSP plant, while both are efficient
renewable technologies and have great potential to replace fossil
fuels in the future. According to Paoli et al. [100], the transformity
of PV electricity (8.92E+04 seJ/J) is approximately five times higher
than that of wind-generated electricity. This indicates that wind
power is much more efficient and requires less emergy input from
environment and society than photovoltaic. A large transformity
for PV can be attributed to the complexity and high energy
consumption of crystalline silicon wafer production, as well as
its higher costs of plant design and maintenance. In comparison,
coal-fired power plant has the largest transformity (1.71E+05 seJ/J)
and hydroelectricity has a similar transformity with CSP, as studied
by Brown and Ulgiati [35]. In fact, the transformity of electricity
from wind power has also been reported as 6.21E+04 seJ/J in their
study on five 500 kW Italian wind turbines constructed in 1996.
The current value of wind power transformity (1.74E+04 seJ/J)
demonstrates the remarkable technological progress and
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sustainable performance of modern large-scale wind farm during
the last decade.
4.2. Comparison of emergy indices for renewable energy systems

In order to assess the relative performance and sustainability of
wind power, the resulting indices are compared with solar thermal
and photovoltaic plants [100] and various nonelectric energy
carriers from biomass [36,38,40,95,99,100,108,111,112]. Those stu-
dies have adopted the similar assumptions and standard methods
for conducting emergy analysis. So the comparison of emergy
ratios and indices can effectively provide insight into their indivi-
dual sustainability.

The emergy-based indices for those renewable energy systems
are listed in Table 4. Wind power has a higher PR (0.20) than solar
thermal (0.15) and photovoltaic (0.02), indicating a better level of
renewability. PRs of biomass energy production are even higher in
average due to their less dependency on nonrenewable emergy
support from human society. The emergy yield ratio (EYR) of wind
power is 1.25, in the medium level of those of traditional
electricity production systems (1.06–1.51) [113], which proves that
wind farm is relatively efficient at harnessing local resources to
provide net benefit to society. The environmental loading ratio
(ELR) measures the potential environmental impact of a system,
thus assisting EYR to give a comprehensive evaluation. ELR of
photovoltaic plant (48.93) is much higher than that of wind power
(4.00), solar thermal plant (5.54) and biofuel production systems
(0.52–7.84). It can be inferred that wind power, compared with PV,
has less environmental stress to generate the same amount of
electricity. The sustainable performance of wind farm is further
verified by possessing a higher ESI (0.31), which is an aggregated
measure by EYR and ELR to account for both economical and
ecological compatibility. It is also the key advantage of wind power
over solar technologies to have a large emergy yield per unit of
environmental loading. As seen from the emergy indices in
Table 4, biomass-derived fuels, especially biogas by anaerobic
Table 3
Emergy-based indices for the investigated wind farm.

Index Calculation Wind power

Percent renewable (PR) (R+FR+SR)/U 0.20
Emergy yield ratio (EYR) U/(FN+SN) 1.25
Environmental loading ratio (ELR) (N+FN+SN)/(R+FR+SR) 4.00
Emergy investment ratio (EIR) (FN+SN)/(R+FR+SR+N) 4.00
Emergy sustainability index (ESI) EYR/ELR 0.31

Table 4
Comparison of emergy indices for renewable energy systems.

Item Reference Published ye

Wind In this study
Solar thermal [99] 2011
Photovoltaic [100] 2008
Biofuel refinery [95] 2010
Bioethanol Wheat [38] 2008

Corn [38] 2008
Sugarcane [108] 2010
Cassava [40] 2011

Biodiesel Vegetable oil [112] 2007
Soybean [111] 2010

Biogas [36] 2011

a Not considered in the literature. We recalculated the values to supplement the co
digestion, show a better ecological performance and environmen-
tal sustainability than wind and solar technologies.

It can be noted that emergy investment ratio (EIR) has
approximately the same value with ELR for wind, solar and
biodiesel production systems. The reason is that those systems
have a negligible utilization of local nonrenewable resources (N),
which can be derived from the respective calculation formulas in
Table 3.

When comparing different categories of systems by the
emergy-based indices, there are certain limitations in illustrating
the numerical variation. In fact, the variation is inherently rooted
in their characteristic fractions of emergy input and different
consideration by each system. This highlights the need for a
broader perspective to assess the relative sustainability of different
production systems. However, for the same kind of production
system, discrepancy of emergy indices can also be found in the
literature. For example, emergy indices for bioethanol and biodie-
sel production, as listed in Table 4, show some variation. This is
mainly attributed to the differences in feedstock, production
efficiency and the respective technological process considered in
emergy analysis. Meanwhile, the renewable fraction of labor and
services (SR) changes with the share of the renewables driving the
economic system in different location and time period, which
directly affects the emergy indices of the investigated system. In
order to arrive at a comparable result, consistency must be strictly
guaranteed during the implementation of emergy analysis.
4.3. Human labor and services

Although usually neglected in traditional energy analysis, labor
and services are important system inflows in emergy-based
method. As shown in Fig. 3, human labor for plant construction,
operation and maintenance represents a large fraction of total
emergy use (59.65%). Therefore, wind power highly relies on
emergy input of human services, reflecting the need to simplify
and optimize the process to make it more cost-effective. On the
other hand, wind industry offers considerable employment oppor-
tunities during the different phases of wind farm development,
such as turbine manufacture, plant construction, operation and
maintenance, as well as indirect employment. According to the
Global Wind Energy Council, annual market for wind energy will
create 13 jobs for every megawatt of new capacity in that year,
employing 524,000 people in the wind energy sector by 2020
[110]. As wind power continues to expand in China, it has great
potential to stimulate economic growth and employ surplus labor,
especially in the rural areas.

Wind power demands a relatively large footprint on the land to
get large-scale, with the cost of land occupation taking up a big
ar PR EYR ELR EIR ESI

0.20 1.25 4.00 4.00 0.31
0.15 1.19 5.54 5.54 0.21a

0.02 1.03 48.93 37.27 0.02a

0.25a 1.05 3.02 0.95 0.35
0.20 1.24 4.05 2.38a 0.31
0.11 1.14 7.84 5.36a 0.15
0.31 1.57 2.23 1.44a 0.71
0.28 1.07 2.55 2.47a 0.42
0.06 3.68 3.55 3.57 1.04
0.31 1.62 2.26 2.26a 0.72
0.66 2.93 0.52 0.52a 5.67

mparison.
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portion of capital investment (9.23% of total emergy use). Land
must be expropriated from local government for infrastructure
installation, temporary land use during construction and access
roads. But wind turbines are usually spaced 5–9 rotor diameters
apart to maximize performance. In order to save emergy cost and
increase the whole sustainability degree of regional land use,
space between the towers should be fully utilized for other
compatible purposes, such as food production and ecological
vegetation.
4.4. Waste treatment

A lot of wind farm facilities are made up of recyclable materials.
Waste treatment is an efficient method to reduce the harmful
environmental impacts after the plant’s disassembly and disposal.
Detailed data regarding the Yulin wind farm is currently unavail-
able. The recycling of plant wastes is estimated based on a scenario
depicted in a previous work [11].The potentially recyclable emergy
of a Chinese wind farm is calculated to be 6.69E+18 seJ, accounting
for 28% of total purchased materials. An integrated waste manage-
ment strategy for the wind farm should be implemented to reduce
the emergy consumption and optimize the resource efficiency by
more recycling. It should be pointed out that other resources are
consumed during the process of waste treatment. Therefore, the
role of waste treatment in improving the comprehensive emergy
performance of wind farm still needs further consideration.
5. Concluding remarks

This paper focused on the emergy analysis of a modern wind
farm in China. Compared with embodied energy metrics, emergy
analysis proves to be a valid approach to evaluate the environ-
mental sustainability of human-dominated production systems.
Emergy seems to provide a more adequate coverage of the
dimensions of sustainability by considering different forms of
materials, environmental support, human labor and economic
services on a common basis. The outstanding performance and
sustainability degree of wind power technology was confirmed by
the calculated emergy ratios and indices. The transformity of
electricity from the wind farm is the lowest among various
electricity generation processes, indicating that it has a higher
thermodynamic efficiency from the viewpoint of the biosphere. In
order to assess the relative performance and sustainability of the
investigated system, different kinds of renewable energy systems
were compared by several emergy-based indices, including
emergy yield ratio, environmental loading ratio, emergy sustain-
ability index, etc. The result shows that wind power, in compar-
ison with solar technologies, has a better level of renewability and
is a more efficient and productive user of emergy investment with
a lower environmental impact. When measured by emergy-based
indices, the sustainability performance of those renewable energy
systems, from an ecological point of view, is ranked as follows:
biomass-derived fuels4wind power4solar thermal and photo-
voltaic plant. As two important contributors to the total emergy
use, human labor and cost of land occupation deserve special
attention in future wind farm projects. Moreover, emergy saving
from waste treatment has also been estimated and need further
consideration.

The present study of emergy analysis of modern wind farm,
with broader spatial and time frames, can assist in comprehensive
environmental planning and policy-making. Given the rapid
expansion of wind market in China, it is recommended that great
importance should be attached to future wind power development
to enhance sustainability.
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Appendix
1.
 Wind (kinetic energy)
Area swept by the rotor: 3.14� (32 m)2�24 turbines¼
7.72E+04 m2.
Average wind speed: 7.22 m/s.
Annual working time: 8269 h¼2.98E+06 s.
Air density: 1.3 kg/m3.
Maximum wind turbine efficiency: 0.593 (Betz limit).
Energy input¼0.5�1.3 kg/m3�7.72E+04m2� (7.22 m/s)3�
0.593�2.98E+06 s/year�20 years¼6.67E+14 J.
2.
 Land loss
Area of tower foundation: 3.14� (7 m)2�24 turbines¼
3.69E+03 m2.
Land class: pasture and livestock.
Transformity of pastureland with livestock: 8.00E+10 seJ/
m2/year.
Total land loss¼8.00E+10 seJ/m2/year�3.69E+03 m2�20
years¼5.90E+15 seJ.
3.
 Rotor
Three blades and nose cone: 6.6 t Resin+4.4 t fiber glass.
Total mass of resin and fiber glass¼ (6.6 t+4.4 t)�24
turbines¼26.4 t.
Blade hub: 7.9 t cast iron.
Total mass of cast iron¼7.9 t�24 turbines¼189.6 t.
4.
 Nacelle
Bed frame: 11.4 t iron.
Main shaft: 6.6 t steel.
Transformer: 0.2 t silica+3.6 t steel+1.6 t copper.
Generator: 0.2 t silica+2.2 t copper+4.6 t steel.
Gearbox: 8.7 t iron+8.7 t steel.
Nacelle cover: 1.3 t resin+0.9 t fiber glass.
Total mass of iron¼(11.4 t++8.7 t)�24 turbines¼482.4 t.
Total mass of steel¼(6.6 t+3.6 t+4.6 t+8.7 t)�24 turbines
¼564 t.
Total mass of silica¼(0.2 t+0.2 t)�24 turbines¼9.6 t.
Total mass of copper¼(1.6 t+2.2 t)�24 turbines¼91.2 t.
Total mass of resin and fiber glass¼(1.3 t+0.9 t)�24
turbines¼52.8 t.
5.
 Tower
Total mass of steel¼87.9 t�24 turbines¼2109.6 t.
6.
 Transformer
Transformer: 0.6 t silica +10.8 t steel +4.8 t copper.
7.
 Control system
Control system: 5 computers.
8.
 Transport fuel
Rotor and nacelle (produced in Shanghai): 68.9 t�24
turbines� (2185 km+40 km)¼3.68E+06 t km.
Transformer (fabricated in Nanjing): 16.2 t� (2103 km
+40 km)¼3.47E+04 t km.
Steel bar for tower (purchased in Yulin City): 87.9 t�24
turbines�40 km¼8.44E+04 t km.
Diesel intensity: 0.05 L/(t km).
Diesel density: 0.83 kg/L.
Total diesel consumption¼(3.68E+06 t km+8.44E+04 t km
+3.47E+04 t km)�0.05 L/(t km)�0.83 kg/L¼1.58E+02 t.
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9.
 Tower foundation
Total volume of concrete: 347.23 m3/tower�24 turbines
¼8333.6 m−3.
Total mass of steel bar: 41.33 t/tower�24 turbines
¼992.0 t.
10.
 Substation
Substation: 163.8 m3 concrete+7.9 t steel bar.
11.
 Cable
Grounding cable from wind farm to booster station:
18 km�5076 kg/km.
Overhead line from wind farm to substation: 23 km�
103 kg/km.
Total mass of cable: 18�5076 kg+23�103 kg¼93.74 t.
12.
 Power supply
Electricity consumption: 2000.0 kW h/day.
Construction period: three months (90 days).
Total consumption of electricity¼2000.0 kW h/day�90
days¼6.48E+11 J.
13.
 Water supply
Water consumption: 300.0 t/day.
Construction period: three months (90 days).
Total consumption of water¼300.0 t/day�90 days¼2.70E
+04 t.
14.
 Machine oil
Lubricant for tower: 37.9 kg/year/turbine�20 years�24
turbines¼18.19 t.
Lubricant for nacelle: 11.4 kg/year/turbine�20 years�24
turbines¼5.45 t.
Lubricant for transformer: 12.2 kg/year/turbine�20 years
�24 turbines¼5.87 t.
Total mass of lubricant¼18.19 t+5.45 t+5.87 t¼29.51 t.
15.
 Water supply
Water for operation and maintenance: 3.5 t/day.
Total consumption of water¼3.5 t/day�365 days�20
years¼25.55 t.
16.
 Blade substitution
Mass of resin and fiber glass¼3.6 t/blade�24 turbines
¼86.4 t.
17.
 Generator substitution
Substitution ratio: 0.15.
Mass of silica¼0.2 t/generator�24 turbines�0.15¼0.72 t.
Mass of copper¼2.2 t/generator�24 turbines�0.15
¼7.92 t.
Mass of steel¼0.2 t/generator�24 turbines�0.15¼
16.56 t.
18.
 Labor for operation and maintenance
Permanent staff: 18 person.
Annual salary: 6.35E+04 RMB/person (9.14E+03 $/person).
(Yearly average exchange rates in 2008: 1 $¼6.95 RMB).
Total cost of permanent personnel¼9.14E+03
$/person�18 person�20 years¼3.29E+06 $.
19.
 Construction manpower
Reconnaissance and design of wind farm: 5.10E+06 RMB
(7.34E+05 $).
Plant construction (Wind turbine and the affiliated equip-
ments installation): 3.00E+07 RMB (4.32E+06 $).
Total cost of construction manpower¼7.34E+05 $+4.32E
+06 $¼5.05 E+06 $.
20.
 Cost of land occupation
Permanent land use: 180 RMB/m2�16865 m2 (5400 m2

wind generator set+9360 m2 substation+others)¼3.04E
+06 RMB.
Access road for plant maintenance: 72 RMB/m2�69300
m2¼5.00E+06 RMB.
Temporary land use for construction: 30 RMB/
m2�30200 m2¼9.06E+05 RMB.
Total cost of land occupation¼3.04E+06 RMB+5.00E+06
RMB+9.06E+05 RMB¼8.94E+06 RMB¼1.29E+06 $.
21.
 Lifetime yield
Annual electricity generation of wind farm: 6.54E+07 kW h
(2.35E+14 J).
Lifetime yield¼2.35E+14 J/year�20 years¼4.71E+15 J.
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