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Biomass pyrolysis offers an alternative to industrial coal-fired boilers and utilizes low temperature
and long residence time to produce syngas, bio-oil and biochar. Construction of biomass-based
pyrolysis plants has recently been on the rise in rural China necessitating research into the green-
house gas emission levels produced as a result. Greenhouse gas emission intensity of a typical bio-
mass fixed-bed pyrolysis plant in China is calculated as 1.55E�02 kg CO2-eq/MJ. Carbon cycle of the
whole process was investigated and found that if 41.02% of the biochar returns to the field, net
greenhouse gas emission is zero indicating the whole carbon cycle may be renewable. A biomass
pyrolysis scenario analysis was also conducted to assess exhaust production, transportation distance
and the electricity-generation structure for background information applied in the formulation of
national policy.
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1. Introduction

As a large agricultural country, China produces more than 800
million t of crop straws every year [1], with 80% potentially uti-
lizable as an energy resource [2]. High value energy forms derived
from biomass conversion have been recently recognized and
highlighted by the Chinese government as a significant resource.
Priority was established by the government in the Chinese “12th
Five-Year” Planning [3] for the integration of agricultural residuals
into energy production technology, specifically through the
development of biomass power generation, biomass liquid fuel,
biogas and briquettes fuel. Implementation of biomass energy
development priorities soon followed as regulations were estab-
lished by the government in 2006 allowing for subsidization of
electricity produced from biomass at 0.25 yuan/kW [4]. Regula-
tions implemented in 2008 by the Ministry of Finance and State
Administration of Taxation [5] provided an added-value tax for
electricity, heat, bio-oil and products derived from agricultural
residues, sludge and other wastes. Construction of comprehensive
biomass facilities is occurring according to Chinese “12th Five-
Year” Planning. Biomass energy facilities production will reached
capacity equivalent to 50 million t of standard coal in China by the
year of 2015. Total capacity of biomass power is expected to reach
13 GW, while electricity generation from biomass will achieve
7.8Eþ10 kW h per year. Biogas yield will realize 22 km3 per year
and the production of biomass briquettes fuel and liquid fuel will
be 10 million t per year and 5 million t per year, respectively [3].

Biomass pyrolysis thermally converts biomass feedstock into
biochar, bio-oil, and syngas in the absence of air/oxygen [6]. Pro-
ducts generated from biomass pyrolysis offer options for alleviat-
ing greenhouse gas (GHG) emissions and for providing realistic
options in mitigating coal combustion particulate matter (PM)
emissions as the generated heat and electricity act to substitute for
coal combustion in small-sized industrial boilers in China. Forms
of biomass pyrolysis have been utilized for thousands of years in
China [7]. Earthen kilns or brick kilns were utilized in early times
to produce charcoal from wood through a traditional pyrolysis
process [6,8]. The cycle of kiln production was inefficient and not
economical, however, requiring more than 20 days with limited
output resulting in only one type of coal produced [9]. Kiln char-
coal production significantly contributed to environmental pollu-
tion in China [8] during the last century as gaseous and liquid
byproducts from the traditional biomass kilns directly emitted into
the environment without treatment. Pyrolysis technology has
developed rapidly since the 1990s and various raw materials and
reactors have been employed [10,11]. Advanced pyrolysis shor-
tened production time required by applying external heating
s poly-generation pyrolysis plants in China.

ference Raw material Scale (t/year) S

is study Cotton stalk, rise husk, forestry residues 2.56Eþ03 5
0] Cotton stalk, branch 1.50Eþ04 1
1] Cotton stalk, wheat straw, rape stalk 4.84Eþ04 1
2] Straw 1.80Eþ04 1
3] Straw 3.65Eþ02 4
methods and the pollutants, including tar and exhausts, were
separated and purified prior to emission. The advanced technology
improved adaptability for raw materials, energy conversion effi-
ciency and decreased environmental impacts. Utilization of gas-
eous and liquid byproducts also contributed to an improved eco-
nomical efficiency [12,13]. Biomass pyrolysis product distribution
relies on applied technology and reaction parameters, including
residence time, heating rate, particle size and final temperature.
Pyrolysis can be classified, according to these parameters, into
conventional pyrolysis, fast pyrolysis and flash pyrolysis [14]. Fast
pyrolysis and flash pyrolysis are characterized by high heating
rates and short residence times with a high yield of bio-oil [15].
Limited application of bio-oil in China restricts the industrializa-
tion of these methods, however [7,16]. Conventional pyrolysis
technologies, also referred to as the poly-generation pyrolysis
system, provides high energy-conversion efficiency and economic
profitability as it is characterized by low temperature and long
residence time and generates three products, syngas, liquid oil and
solid char [16]. Construction of several poly-generation pyrolysis
plants in rural China has occurred with the support of the Chinese
government and are mainly located at agricultural provinces with
ability to support a capacity of 200–500 kg biomass per hour. Poly-
generation pyrolysis can be classified into fixed-bed pyrolysis and
moving-bed pyrolysis [6,16]. Fixed-bed pyrolysis technology, with
its simple structure and low initial investment [6,16], is dominant
in China. Moving-bed pyrolysis may operate continuously while
maintaining higher energy conversion efficiency and a larger scale
utility, but is still under research and development. Several fixed-
bed poly-generation pyrolysis plants have been built in Hubei,
Zhejiang, Henan and other areas in recent years, as listed in Table 1
[8,17–19]. Current environmental impact assessment, especially as
related to greenhouse gas, is vital while further development of
pyrolysis plants is trending toward larger scales as technology
advances with governmental support.

Biomass derived energy, often guaranteed to be carbon neutral
[24]. is widely accepted for potentially reducing fossil fuel use and
associated GHG emissions. Research devoted to biomass gasifica-
tion [25–28] and direct combustion [29,30] or co-combustion [24],
has proven that biomass-based systems demonstrate enormous
benefits in reduction of GHG emissions compared to coal power
plants. Recent alternative biomass systems however, demonstrate
a departure from ideal biomass cycles as non-renewable resources
consumption may actually generate added GHG emissions.
Research studying environmental impacts of biomass-based
ethanol and biodiesel production systems, for example, produced
results indicating increased GHG emissions [31–35]. Accurately
yngas (m3/year) Biochar (t/year) Wood tar (t/year) Wood vinegar (t/year)

.47Eþ04 5.48Eþ02 9.13Eþ01 5.48Eþ02
.58Eþ07 4.63Eþ03 5.93Eþ01 1.20Eþ03
.14Eþ07 1.14Eþ04 1.92Eþ03 9.52Eþ03
.80Eþ04 6.00Eþ03 3.00Eþ02 1.20Eþ03
.75Eþ05 8.03Eþ01 2.92Eþ00 3.65Eþ01
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determining GHG emissions produced as a result of increasingly
used biomass-based systems is imperative.

Considerable debate surrounds GHG emissions generated by
pyrolysis systems. Zhong et al. (2010) [36] analyzed environmental
impacts of wood waste flash pyrolysis and declared that continuous
research is required to further reduce global warming potential
from this pyrolysis system. Cao et al. (2013) [37] compared energy
and greenhouse gas emission from a fast pyrolysis system com-
bined with anaerobic digestion and a fast pyrolysis system for
bioenergy conversion. Both systems achieved GHG emission bene-
fits with the anaerobic digestion system demonstrating a superior
performance to the fast pyrolysis system. Roberts et al. (2009) [38]
analyzed the net climate change impact of a slow pyrolysis system.
Results indicated that net GHG emissions for late stover, early
stover, and yard waste systems were negative but the switch grass
pyrolysis systemmay act as a net GHG emitter. The carbon footprint
of GHG emissions as related to biomass-based pyrolysis systems in
China is still unknown. Pre-construction analysis involving GHG
environmental assessments should be implemented for systems
accompanied with carbon abatement plans as a pre-cursor to pyr-
olysis plant construction.

GHG emissions and the carbon cycle for a typical biomass
pyrolysis system, a fixed-bed poly-generation pyrolysis system, in
China, is investigated in this paper. GHG emissions are accounted
for throughout the entire process including construction of the
plant, transportation of feedstock, manufacture of equipment,
operation and maintenance. The leading GHG emission point
within the system is determined with results analyzed and com-
pared to various biomass utilization technologies. Scenario ana-
lyses are then performed to optimize the biomass-based pyrolysis
system. Relevant information culminates in guidance toward
efforts to decrease GHG emissions resulting from Chinese biomass
pyrolysis plants and provides potential governmental policy
suggestions.
Plant Pyrolysis plant Wood
tar

Syngas

Biochar

Transportation
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Fig. 1. Carbon cycle of the whole processes.
2. Methodology

Two principle methods are usually used for calculating GHG
emissions, Input–Output Method, and Life Cycle Assessment [39].
GHG emissions of various large scales have been calculated by the
Input–Output Method. Chen et al. (2011) [40] first evaluated the
GHG emissions, energy, emergy and exergy consumption and
other environmental factors on a global scale based on the Input–
Output Method, and established the related database [41,42].
Ahmad and Wyckoff (2003) [43] evaluated GHG emissions of fossil
fuels from 24 countries in 1995 according the statistics of Orga-
nization for Economic Co-operation and Development (OECD) and
International Energy Agency (IEA), establishing the GHG emissions
database of 14 departments. Later, Nakano et al. (2009) [44]
expanded the database to 17 departments of 41 countries. Hert-
wich and Peter (2009) [45] researched the GHG emission of
8 departments (construction, shelter, food, clothing, manufactured
products, mobility, service and trade) for 73 nations and 14
aggregate world regions. Zhou [46] analyzed the GHG emission
intensity for 151 typical products within the Material Product
System(MPS) and the System of National Accounts (SNA). Input–
Output Method application may confirm data integrity, however,
results are based on specific industry averages, and can not cal-
culate GHG emissions for a specific biomass-based utilization
systems recently due to data unavailability. Life Cycle Assessment
(LCA) is often applied to determine GHG emissions of these sys-
tems, such as for the biomass-based liquid fuel production systems
[31,47–58], biomass pyrolysis systems [7,36,38,59,60], biomass
gasification systems [25,27,28,61]. Börjesson et al. (2009) [62]
emphasized that definition of the system boundary may bear
enormous effects on final results. Johnson (2008) [63] calculated
GHG emissions of liquefied petroleum gas(LPG) and electric fork-
lifts according to several typical and distinct carbon footprint
system boundaries, and suggested that definition of system
boundary should be sensible and transparent, but not prescribed.
In theory, it is impossible to avoid the definition of system
boundary only by life cycle assessment, and different system
boundaries will lead to incomparable of results.

Input–Output Method and LCA are combined in this study to
quantify GHG (including CO2, CH4 and N2O) emissions of the
biomass-based pyrolysis system. The Input–Output Method acts to
ensure integrity of analysis, while LCA calculates individual system
component GHG emissions. Thus the traditional LCA, which is a
chain accounting, has been extended into a net-based calculation,
which has been already used to evaluate the GHG of Chinese wind
farm and solar tower [34,64–67]. Meanwhile, the GHG associated
with equipment manufacture, building materials production and
waste treatment are usually ignored in previous study under dif-
ferent system boundary definitions due to data unavailability. In
this study, these can be accounted and considered in a scientific
way by combining the Input–Output Method with LCA. Thus for
the first time the whole picture of GHG emissions for a biomass
pyrolysis system can be nearly revealed.

Calculations of GHG emissions include the collection and
transportation of biomass raw materials and the construction of
the plant and biomass pyrolysis processes. Cultivation processes of
biomass feedstock are precluded as raw materials of the plant
consist of biomass residues, byproducts from the agricultural
industries, thus production of the biomass residues would not
increase environmental pressure [68]. System GHG emissions
generally consist partially of direct emissions and partially of
indirect emissions [69,70]. Direct GHG emissions, the GHG
released due to combustion of syngas, biochar and wood tar, are
assumed as net zero since the GHG released is captured by pho-
tosynthesis in the biomass growth process. Greenhouse gas is
discharged indirectly as a result of activities such as the con-
struction of buildings, the manufacture of equipment, the gen-
eration of electricity etc. The carbon cycle encompassing the entire
system is illustrated in Fig. 1.

An inventory of all input material flows into the total chain of
processes is listed as a first step in calculating GHG emissions [34].
GHG emissions associated with nonrenewable energy costs can then
be calculated as input flows multiplied by suitable conversion coef-
ficients which express the unit GHG emissions of each input [64].



1 Shredder    2 Separator    3 Filler silo    4 Dryer    5 Molding machine
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Fig. 2. The diagram of a biomass-based pyrolysis plant in China.

Table 2
The outputs of the plant.

Outputs Energy (MJ) Percentage (%)

Syngas 1.33Eþ08 25.36
Biochar 3.39Eþ08 64.75
Wood tar 5.18Eþ07 9.90
Total 5.24Eþ08 100.00
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GHG emission intensity (EI) is defined as the amount of GHG
generated by one unit output energy of the system [66], expressed as

EI¼GHG
Eout

where GHG is the GHG emission directly and indirectly in the pro-
duction process and Eout is the energy content of the product.

The GHG emissions can be calculated as

GHG¼
X

GHGi ¼
X

ðInputi � GiÞ

where GHGi denotes the GHG emissions directly and indirectly in
the production of the ith inputs to the whole processes of a biomass-
based pyrolysis plant, Gi is defined as the GHG-intensity coefficient
of the ith inputs [65]. In this study, most GHG-intensity coefficients
associated with GHG emissions can be found in Zhou [46].

Quantification of GHG emissions of all processes is possible
utilizing this method. Some GHG emissions are exclusive in our
study due to data inaccessibility such as: (1) GHG emissions from
plant wastewater treatment; (2) Labor and machines GHG emis-
sions during construction of the plant.
3. Inventory of the biomass-based pyrolysis plant

Study focus is based on a biomass-based pyrolysis plant located
in Tianmen, Hubei Province, China, with a coverage area of
18,000 m2 and a calculated operational life of 20 years.

The general plant diagram is illustrated in Fig. 2 with research
outputs listed in Table 2.

Fixed-bed pyrolysis is a promising energy-conversion technol-
ogy with three products, syngas, bio-oil and biochar. Syngas is
utilizable as a combustion fuel following purification [71] and is
mainly composed of H2, CH4, CO and CO2 with a yield of
547,500 m3 per year and a low heating value of 12.1 MJ/m3.
Absence of oxygen during the pyrolysis process leads to high
content of methane (40% of syngas) and hydrogen (10% of syngas),
the principle contributors to heating value, resulting in syngas
obtained by fixed-bed pyrolysis retaining higher heating value
than syngas obtained from gasification. Biochar represents 25–30%
of total plant products, producing a total weight of 547.5 t
annually. Biochar retains high stable carbon content with the
potential to offset GHG emission [72]. Wood tar, the main content
of liquid products, is produced annually at a rate of 91.25 t. Che-
mical processes allow conversion of wood tar into biodiesel. Wood
vinegar is an additional liquid product generated and is mainly
composed of water and acetic acid. Wood vinegar is not con-
sidered in this study as it retains a high water content (over than
85%) and low heating value.

Four major components of plant performance were studied:

(1) Building works (combination workshop and office buildings);
(2) Equipment (drying and molding system, pyrolysis carboniza-

tion system and separation and purification system);
(3) Transportation;
(4) Operation and maintenance.

3.1. Building works

Combination workshop and office buildings construction are
analyzed under the building works component of the plant per-
formance study. The combination workshop includes workshops
for drying and molding, pyrolysis carbonization, separation and
purification and also includes the wood tar storage pool, wood
vinegar storage pool and circulating water pool. Construction
materials of building works consist of bricks total weight of 777.68
t, concrete volume of 234.11 m3, and steel total weight of 35.1 t.
The total GHG emissions of building works can be calculated as
5.85Eþ02 t CO2-eq. The data of building works for other biomass
pyrolysis plants are unavailable, as these research published did
not describe the data associated with building works. Thus the
GHG emissions of other biomass-based thermal conversion sys-
tems with available data are evaluated in this study to compare
with the studied system as shown in Table 3. It is note that data of
the 20 MW integrated biomass gasification combined cycle plant



Table 3
GHG emissions of biomass thermal conversion systems caused by building works.

Cases Location Building
materials

GHG emission (t
CO2-eq)

Biomass pyrolysis system (this
study)

China Concrete, steel,
brick

5.82Eþ02

20 MW integrated biomass
gasification combined cycle
plant [73]

China Cement, steel,
iron, aluminum

1.50Eþ03

15 MW biomass direct com-
bustion heat and power
plant [74]

China Concrete, steel,
brick

5.18Eþ03

Table 4
Energy consumption of different transportation modes.

Number Mode of
transportation

Power
sources

Consumption
intensity

Unit Density
(kg/L)

1 Highway Diesel 0.050 [77] L/
(t km)

0.83

2 Highway Gasoline 0.080 [78] L/
(t km)

0.75

3 Railway Electricity 0.016 [79] kW h/
(t km)

–

4 Railway Diesel 0.025 [77] L/
(t km)

0.83
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and of the 15 MW biomass direct combustion heat and power
plant are from our previous research [73]. Building works depends
on the scale of workshops, office buildings and auxiliary con-
structions. GHG emissions of the biomass gasification system
caused by building works are lower that of the biomass direct
combustion system. And GHG emissions of the studied system are
lower than that of the other systems listed in Table 3, because
compared with the studied system, the other systems include
extra building works associated with electricity generation
processes.

3.2. Equipment

3.2.1. Drying and molding system
The drying and molding system includes machines to shred,

dry and mold. Raw material is first placed in a shredder and pro-
cessed into particles approximately 2 mm in size [75]. A drying
process is then applied to decrease moisture content of the raw
material particles as a dried biomass feedstock will increase pyr-
olysis efficiency. Biomass feedstock moisture content levels must
adhere to limits as extremely dried feedstock may increase reac-
tion temperature leading to the formation of contaminants such as
nitrogen oxides (NOx) [76]. The moisture content of the raw
material particles in this study is approximately 8–12%. Subse-
quently, the small biomass particles will be extruded in a molding
machine to form biomass briquettes with density no less than
1000 kg/m3.

3.2.2. Pyrolysis carbonization system
The pyrolysis carbonization system consists of two heating

furnaces and five retorts. Diameter of a pyrolysis retort is
approximately 1.6–2.2 m. Pyrolysis of crop straws is divided into
four stages: drying stage, pre-carbonization stage, carbonization
stage and calcination stage. Reaction temperature in the drying
stage is kept below 120–150 °C with low heating rate while
moisture in the crop straws evaporates with virtually no conver-
sion of chemical composition. Pre-carbonization stage reaction
temperature is maintained at 150–275 °C while volatile
components decomposition produces carbon dioxide, carbon
monoxide and acetic acid. The carbonization stage, the central
process of pyrolysis, maintains higher reaction temperatures at
approximately 275–450 °C, resulting in higher liquid yield (wood
tar and wood vinegar) and lower biochar production [7]. Calci-
nation is the final pyrolysis stage and retains an integral role in the
process of upgrading biochar quality with temperature maintained
between 450 and 500 °C.

3.2.3. Separation and purification system
Separating tower, cooling tower and filter tower constitute

the separation and purification system. This system functions to
provide cooling and impurity removal, including gas–liquid
separation, removal of acid gas and tar ash. Wood vinegar steam is
converted to liquid by the cooling tower and utilized in the system
as cooling water as illustrated in Fig. 2.

GHG emissions caused by equipment can be calculated as
2.7Eþ02 t CO2-eq. Data of equipment list of other biomass pyr-
olysis systems is unavailable. Nevertheless detailed data of a Chi-
nese biomass direct combustion system [74] and a Chinese bio-
mass gasification system [73] are available as we have previously
studied. The equipments of 15 MW biomass direct combustion
heat and power plant consist of boiler, turbine, generator, fan,
pump, heater, deaerator, valve, shredder, belt conveyer and so on.
GHG emissions of this direct combustion caused by equipments
are 3.13Eþ04 t CO2-eq. And equipments of 20 MW integrated
biomass gasification combined cycle plant mainly contains gasifi-
cation furnace, decontamination system, combustion engine,
exhaust-heat boiler, screw expander, generator, storage system,
total GHG emissions are 4.15Eþ02 t CO2-eq. GHG emissions
caused by equipments depend on the scale of plant, biomass uti-
lization technology, target products and so on. Similar with the
results of GHG emissions caused by building works, GHG emis-
sions of biomass gasification system caused by equipments are
lower than that of biomass direct combustion system. And because
there are no electricity generation equipments in the studied
biomass pyrolysis system, GHG emissions of the studied system
caused by equipment are lower than that of the biomass gasifi-
cation system.

3.3. Transportation

The planting area for cotton and rice is Chinese 25,000 mu and
40,000 Chinese mu. Statistics indicate the total yield of crop straw
is 8000 t per year. Fossil fuel consumption for crop straw trans-
portation from collection stations to the pyrolysis plant assumed
highway transport by diesel vehicles with an average transport
distance of 20 km. Diesel consumption for transportation purposes
was calculated at 2.12 t per year with a plant crop straw con-
sumption of 2555 t per year and consumption intensity of the
diesel estimated at 0.05 L/(t km) [34] and diesel density at 0.83 kg/
L. and diesel density at 0.83 kg/L. The GHG emission of transpor-
tation processes can be calculated as 1.91Eþ01 t CO2-eq. However,
different transportation modes could lead to different GHG emis-
sions. It is note that highway is primary transportation mode in
China in biomass feedstock transport industry. The power sources
and consumption intensity of highway and railway transportation
are listed in Table 4. GHG emissions of different transportation are
shown in Fig. 3, railway transportation which consumes electricity
releases least greenhouse gas. GHG emissions of highway trans-
portation are higher than that of railway transportation, but
highway transportation is more flexible, and highway transpor-
tation is highly developed in China. In addition, the biomass-based
projects are usually not far from agriculture field in China; and the
collection radius is usually less than 50 km, thus highway trans-
portation is widely used in biomass feedstock transportation in
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Fig. 3. GHG emissions of different transportation modes.

Table 5
GHG emissions of biomass thermal conversion systems caused by operation and
maintenance.

Cases Location GHG emission (t CO2-
eq)

Biomass pyrolysis system(this study) China 7.25Eþ03
Biomass pyrolysis for transportation fuels
[80]

Spain 2.00Eþ03

25 MW biomass direct combustion power
plant [81]

China 2.43Eþ03

15 MW biomass direct combustion heat and
power plant [74]

China 7.60Eþ02

5.5 MW biomass gasification power plant
[82]

China 6.83Eþ01

Table 6
GHG emissions of the biomass-based pyrolysis plant.

Item Material Quantity Unit GHG inten-
sity (t CO2-
eq/unit)

GHG (t
CO2-eq)

Building works
Combination
workshop

Room Brick 2.54Eþ02 t 5.30E�01 1.35Eþ02
Foundation Concrete 1.23Eþ02 m3 5.30E�01 6.52Eþ01

Steel 1.84Eþ01 t 1.39Eþ00 2.56Eþ01
Office building
Room Brick 5.23Eþ02 t 5.30E�01 2.77Eþ02
Foundation Concrete 1.11Eþ02 m3 5.30E�01 5.89Eþ01

Steel 1.67Eþ01 t 1.39Eþ00 2.32Eþ01
Equipment
Retort Steel 9.25Eþ00 t 1.39Eþ00 1.29Eþ01
Shredder 1.00Eþ00 t 4.75Eþ00 4.75Eþ00
Loader–unloader Steel 8.10E�01 t 1.39Eþ00 1.13Eþ00
Crane 1.00Eþ01 t 4.25Eþ00 4.25Eþ01
Conveyor 5.00E�01 t 3.32Eþ00 1.66Eþ00
Molding machine 3.20Eþ00 t 4.75Eþ00 1.52Eþ01
Fume extractor 3.00E�02 t 4.75Eþ00 1.43E�01
Roots blower 1.32E�01 t 4.75Eþ00 6.27E�01
Submersible pump 5.00E�02 t 4.75Eþ00 2.38E�01
Chimney Steel 6.00E�02 t 1.39Eþ00 8.34E�02
Water pump 1.00E�01 t 4.75Eþ00 4.75E�01
Alkali vinegar
pump

2.00E�01 t 4.75Eþ00 9.50E�01

Generators Silica 6.60E�04 t 6.00E�01 3.96E�04
Copper 7.29E�03 t 4.70Eþ00 3.43E�02
Steel 8.80E�02 t 1.39Eþ00 1.22E�01

Draught fan 1.50E�01 t 4.75Eþ00 7.13E�01
Thermometry box 1.00E�01 t 4.75Eþ00 4.75E�01
Primary separator Steel 3.00E�01 t 1.39Eþ00 4.17E�01
Primary cooling
separator

Steel 1.07Eþ00 t 1.39Eþ00 1.48Eþ00

Secondary cooling
separator

Steel 6.60E�01 t 1.39Eþ00 9.17E�01

Comprehensive
separator

Steel 5.40E�01 t 1.39Eþ00 7.51E�01

Gas–liquid
separator

Steel 5.00E�01 t 1.39Eþ00 6.95E�01

Steel 5.00E�01 t 1.39Eþ00 6.95E�01
Separating tower Steel 7.50E�01 t 1.39Eþ00 1.04Eþ00
Oil–water separa-
tion tank

Steel 2.00E�01 t 1.39Eþ00 2.78E�01

U-tank Steel 2.00E�02 t 1.39Eþ00 2.78E�02
Alkali tank Steel 1.25E�01 t 1.39Eþ00 1.74E�01
Lye tank Steel 4.00E�02 t 1.39Eþ00 5.56E�02
Water seal Steel 1.20E�01 t 1.39Eþ00 1.67E�01
Gasholder Steel 6.20Eþ01 t 1.39Eþ00 8.62Eþ01
Plates
3700*1850*10

Steel 1.29Eþ01 t 1.39Eþ00 1.79Eþ01

Plates
3700*1850*8

Steel 1.03Eþ01 t 1.39Eþ00 1.43Eþ01

Plates
3700*1850*6

Steel 2.33Eþ01 t 1.39Eþ00 3.23Eþ01

Shore L¼1200 Steel 4.03Eþ00 t 1.39Eþ00 5.60Eþ00
Others Steel 1.15Eþ01 t 1.39Eþ00 1.60Eþ01
Parallel
Riffled plate Steel 1.20Eþ00 t 1.39Eþ00 1.67Eþ00
U-Steel 12.6 Steel 4.70Eþ00 t 1.39Eþ00 6.53Eþ00
Round steel
108*2.5

Steel 5.60E�01 t 1.39Eþ00 7.78E�01

Fan frame Steel 1.20E�01 t 1.39Eþ00 1.67E�01
Fan seal Steel 1.20E�01 t 1.39Eþ00 1.67E�01
Pump frame Steel 6.00E�02 t 1.39Eþ00 8.34E�02
Transportation

Diesel 4.24Eþ01 t 4.50E–01 1.91Eþ01
Operation and
maintenance

Electricity 1.05Eþ07 kW h 6.89E�04 7.25Eþ03
Water 1.39Eþ04 t 8.10E�05 1.13Eþ00
Total 8.12Eþ03
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China. Energy efficiency of diesel vehicles is higher than that of
gasoline vehicles, and GHG emissions of diesel vehicles are lower.
Thus highway transportation by diesel vehicle is often chosen in
biomass feedstock transportation.

3.4. Operation and maintenance

Operation and maintenance process consumption includes
electricity and water. Electricity consumption of the drying and
molding system, pyrolysis carbonization system, and separation
and purification was 3.66Eþ05 kW h/year, 2.42Eþ04 kW h/year,
5.09Eþ04 kW h/year, respectively. The auxiliary system and
domestic electricity consumption was 8.44Eþ04 kW h/year. Total
electricity consumption of the plant was then calculated to be
5.26Eþ05 kW h/year. Water consumption of the circulating cool-
ing water was consumed at 1108 t per day; chemical feed water at
415 t per day; auxiliary cooling water at 385 t per day; and 13
employees daily plant water consumption at 3.5 kg per day. Thus,
the total GHG emissions of operation and maintenance are cal-
culated as 7.25Eþ03 t CO2-eq. As listed in Table 5, GHG emissions
caused by operation and maintenance of other biomass thermal
conversion systems are all lower than pyrolysis system. That is
because the products of other biomass thermal conversion sys-
tems as shown in Table 5 are electricity or heat combined with
electricity, and the operation and maintenance processes will
consume the electricity generated by themselves. Thus their GHG
emissions of operation and maintenance mainly induced by con-
sumption of water, and the larger scale the system is, the more
greenhouse gas the system releases.
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Fig. 4. GHG emissions fractions of the biomass-based pyrolysis plant.

Fig. 5. GHG emission intensity comparison of different biomass thermal conversion
technologies.

Table 7
GHG emission intensity of different biomass pyrolysis system.

Location Year of
study

Items EI (kg CO2-eq/
MJ)

China 2012 Biomass pyrolysis system(this study) 0.016
USA 2008 Biomass pyrolysis system for biochar

production [92]
0.025

Germany 2008 Biomass fast pyrolysis for liquid fuels
[91]

0.070

USA 2010 Biomass for oil and electricity gen-
eration [93]

0.012

China 2014 Bio-fuel production via fast pyrolysis
of corn stover [94]

0.029
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4. Results and discussions

4.1. Results

Biomass-based pyrolysis plant life cycle GHG emissions are
listed in Table 6.

Total calculated GHG emissions for the analyzed Tianmen,
Hubei Province biomass-based pyrolysis plant is 8.12Eþ03 t CO2-
eq. Eout of the plant is 5.24Eþ08 MJ, as listed in Table 2. Thus, GHG
emission intensity is calculated to be 1.55E–02 kg CO2-eq/MJ,
indicating the plant emits 1.55E–02 kg GHG to generate 1 MJ of
energy. Analysis of Table 3 results indicate the operation and
maintenance process as the largest contributor to total GHG
emissions with 89.23% of total plant GHG emissions. Fig. 4
demonstrates that building works contribute 7.20% to overall GHG
emissions while the equipment manufacturing process contributes
3.33%. Transportation process GHG emissions are insignificant
(0.23%). Electricity accounts for the highest consumption in the
operation and maintenance process due to use of fossil fuels in the
electricity generation process. Reduction in electricity consump-
tion would function to decrease GHG emissions.

GHG emission intensity is an integral parameter utilized to
measure environmental impacts of the system. GHG emission
intensity of various biomass derived thermal conversion technol-
ogies are compared and presented in Fig. 5. GHG emission inten-
sities of the biomass combustion system (0.25–0.30 kg CO2-eq/MJ)
are much higher than the pyrolysis system [83–85]. The GHG
emission intensities of the biomass gasification system range from
0.02 to 0.14 kg CO2-eq/MJ [86–88] and 0.012–0.1 kg CO2-eq/MJ for
the biomass pyrolysis system [89–91], while both are renewable
technologies and retain benefits to reduce GHG emissions. Com-
pared with other biomass derived thermal conversion technolo-
gies, however, the fixed-bed pyrolysis technology demonstrates a
significant benefit in GHG reduction as its GHG emission intensity
is relatively low (0.0155 kg CO2-eq/MJ in this study).

GHG emission intensities of different biomass pyrolysis systems
are reviewed and listed in Table 7. The differences of system scales,
target products, feedstock, calculation methods lead to different
results. The GHG emission intensity of this study approximated to
that of biomass pyrolysis systems listed in Table 7, except for
biomass fast pyrolysis system for liquid fuels in Germany. This is
because the pyrolysis system in Germany is not a commercial
plant and the energy conversion efficiency is relatively low. The
biomass poly-generation pyrolysis system studied converts bio-
mass to syngas, bio-oil and biochar, the energy efficiency is
enhanced compared with other pyrolysis systems with a single
product, thus the studied systemmay released less greenhouse gas
when delivering the same amount of energy into society.

The biomass pyrolysis system acts as a substitute for industrial
boilers that combust coal. Presently, the national average GHG
emission intensity of coal power plants is 0.22 kg CO2-eq/MJ [65].
The coal power plant produces approximately 14.2 times more
GHG emissions than the biomass-based pyrolysis plant per unit
energy output.

4.2. Carbon cycle of the whole processes

4.2.1. Carbon balance
Carbon balance would be achievable if indirect GHG emissions

were not accounted for as revealed in Fig. 1 (Section 2). Annual
consumption of raw materials is approximately 2555 t while car-
bon content of the raw materials is approximately 845.16 t and
product carbon content is approximately 632.89 t. Total carbon
content in raw materials is greater than in products as raw
materials are burned directly in the heating furnace to heat the
pyrolysis retort, emitting approximately 180 t carbon directly into
the atmosphere. Additionally, as loss occurs in transportation,
modeling and carbonization, portions of carbon are released but
not converted into products.

The carbon cycle becomes imbalanced due to utilization of
carbon-driven inputs, such as electricity from coal-fired power
plant, diesel from raw oil, equipment and buildings. Net carbon
emissions, as previously calculated, were 1.55E�02 kg CO2-eq/MJ
for the Tianmen, Hubei Province plant, indicating extra
1.55E�02 kg CO2-eq was emitted into the atmosphere outside of
the carbon cycle per MJ energy produced. Carbon emission levels
indicate the cycle is nonrenewable in this case.

4.2.2. Biochar returning
Significant greenhouse gas reduction is possible through

implementation of biochar as a carbon storage mechanism. Carbon
storage through biochar content in soil is feasible and biochar is
viewed as a sound option for atmospheric carbon sequestration
when returned to the field [95]. Characteristics of biochar include
exceptional stability chemically, thermally and microbiologically
[96]. Debate prevails however regarding residence time and the
stability of biochar in soil [97,98]. Debate prevails however
regarding residence time and the stability of biochar in soil [99–
101]. Another perspective views biochar as not acting as a per-
manent carbon sink as, although carbon may be biochar-fixed in



Fig. 6. GHG emissions of different percentage of biochar returning to the field. Fig. 7. GHG emissions of different scenario.

Fig. 8. GHG emissions of different transportation distance.
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soil for thousands of years, oxidation or absorption of soil organic
matter will eventually alter characteristics of biochar in the soil
[102,103].

Sustainable development practices are beginning to consider
the return of biochar to the field as a practical method in GHG
emissions mitigation. In this study, it is assumed that 30% of the
carbon emits into the atmosphere and 70% fixes in the soil
[104,105]. The Tianmen, Hubei Province plant produces 1.10Eþ04
t biochar for 20 years, if all biochar produced is returned to the
field, net GHG emission of the systemwould be �3.20Eþ04 t CO2-
eq, and GHG emission intensity would be �6.11E�02 kg CO2-eq/
MJ, indicating greater GHG is reduced than emitted. Various per-
centages of biochar may lead to different reductions in GHG
emission, as presented in Fig. 6. Net GHG emission is zero when
41.02% of the biochar is returned to the field, indicating the whole
carbon cycle may be renewable. Production of biochar through
biomass pyrolysis with returns of biochar to fix carbon in the field
should receive governmental support as a method to mitigate GHG
emissions.

4.3. Scenario analysis

Several scenario analyses were conducted to optimize the
fixed-bed pyrolysis system.

4.3.1. Utilization of exhaust
The current status of the plant, considered as scenario 1 (base

case scenario) and another scenario are evaluated in this section.
According to the analysis results in Section 4.1, high electricity
consumption is the main factor affecting total GHG emissions.
Electricity consumption of the plant occurs during the following
processes: drying and molding, pyrolysis carbonization, separation
and purification and others with the drying and modeling process
responsible for 70% of the total. Reduction of electricity con-
sumption produced by the system is necessary as energy saving
and emission reduction is a long-term plan established within
Chinese economic and social development policy [106,107]. Sce-
nario 1 reflects current GHG emissions generated by the electricity
consumption of each process. Scenario 2 substitutes high tem-
perature exhaust for the heating furnaces and dryer to decrease
GHG emissions caused by electricity consumption. Exhaust uti-
lized to dry the biomass feedstock and heat the retorts will reduce
electricity consumption of the drying and molding process,
decreasing pyrolysis carbonization and leading to a 14.52% GHG
reduction, as presented in Fig. 7. Exhaust utilization technology
should be further researched for improvement and application by
reviewing both domestic and foreign advance technology methods
and management. Governmental incentives through financial and
tax policies may succeed in supporting utilization of exhaust in the
biomass poly-generation pyrolysis system.
4.3.2. Transportation distance
Biomass transportation is a significant component in GHG

emissions calculations with several studies focused on variability
in overall contributions. Research is dominated by studies focused
on economical impact of purchased biomass costs while only a few
studies have focused on GHG emissions as related to the biomass
feedstock transportation process. Xing et al. (2008) [108] built
mathematical models to simulate the collection cost, energy con-
sumption and environmental pollution of biomass collection and
transportation processes. Results indicate that collection costs of
biomass are proportional to transportation distance, transporta-
tion fuel consumption and distance. Caputo et al. (2005) [109]
analyzed the economics of biomass-based power plants. Results
reveal that higher vehicle transport costs, lower vehicles capacity,
higher biomass purchase costs and lower distribution density lead
to a decrease in economic benefits.

Effects of biomass transportation on GHG emissions are
investigated, in this section, through viewing a range of highway
distances to the biomass-based pyrolysis plant by diesel vehicles.
Fig. 8 presents five points of transportation distance, increasing
from 0 to 200 km. As the transportation distance increases, the
GHG emissions increase from 8.10Eþ03 to 8.29Eþ03 t CO2-eq,
leading to a 2.34% GHG emission increase. Thus the influences of
transportation on total GHG emission of biomass-based pyrolysis
plant are not obvious. The collection radius could be expanded to
collect more feedstocks and enlarge the scale of plant.



Fig. 9. GHG emissions with different electricity generation structures.

Table 8
GHG emissions of the agriculture process for biomass pyrolysis plant in China.

Item Quantity Unit GHG intensity (t CO2-
eq/unit)

GHG (t CO2-eq)

Nitrogen fertilizer 3.28Eþ01 t 1.64Eþ00 5.38Eþ01
Phosphate
fertilizer

1.30Eþ01 t 1.05Eþ00 1.36Eþ01

Potash fertilizer 8.86Eþ00 t 3.00E�02 2.66E�01
Pesticides 2.90E�01 t 3.00Eþ00 8.71E�01
Machines 1.46Eþ00 t 1.39Eþ00 2.03Eþ00
Diesel 2.99Eþ00 t 4.50E�01 1.35Eþ00
Total 7.20Eþ01

This study Cotton stalk Rice husk Wheat straw Rape straw
0.00

5.00x101

1.00x102

1.50x102

2.00x102

2.50x102

3.00x102

G
H

G
 e

m
is

si
on

s (
t C

O
2-e

q)

Fig. 10. GHG emissions of different raw materials in the agriculture process.
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4.3.3. Electricity-generation structure
Biomass-based fixed-bed pyrolysis plant electricity consump-

tion offers a disadvantage as GHG emissions are increased with
high electricity consumption. Contributions from the dominating
coal combustion electricity production already have induced an
elevated GHG emission status. GHG emission intensity compar-
isons in China indicate thermal power produces 0.22 kg CO2-eq/MJ
and hydropower produces 0.03 kg CO2-eq/MJ [34]. Assumed in
this study, is that 15% of electricity generated originates from
hydropower and 85% from coal-fired power, thus the GHG emis-
sion intensity of electricity is evaluated to be 0.19 kg CO2-eq/MJ,
and as previously described, the total GHG emission for this pyr-
olysis plant is 8.12Eþ03 t CO2-eq. GHG emission intensity of var-
ious electricity generation structures can be calculated as with
thermal and hydropower, enabling evaluation of total GHG emis-
sions under diverse electricity generation structures. Comparisons
are drawn between GHG emissions under different electricity-
generation structures as demonstrated in Fig. 9. Results reveal that
if all electricity is generated from a hydropower plant, the pyr-
olysis system may lead to a 75.42% GHG reduction and total GHG
emissions would decrease to 2.01Eþ03 t CO2-eq with GHG
emission intensity reducing to 3.84E�03 kg CO2-eq/MJ, much
lower than 1.55E�02 kg CO2-eq/MJ. Governmental policy should
encourage an increase in hydropower plant construction and a
decrease in the proportion of coal power plants, according to the
results.

4.3.4. Agriculture process
The total cultivated area of cotton and rice is Chinese

25,000 mu and 40,000 Chinese mu. Statistics indicate the total
yield of crop straw is 8000 t per year. The pyrolysis plant is able to
process 2555 t biomass feedstock includes 1600 t of cotton stalk
and 955 t of rice husk. According the statistical data of Chinese
Ministry of Agriculture, the consumption of nitrogen fertilizer,
phosphate fertilizer and potash fertilizer for every Chinese mu
cotton is 12.2 kg, 5.1 kg and 4.1 kg, respectively, and for every
Chinese mu rice is 10.9 kg, 4.3 kg and 2.9 kg [110]. The average
consumption of pesticides is 0.097 kg every Chinese mu in China
and the consumption of machines and diesel are 7.3 kg/m2 and
15 kg/m2 every year, respectively [111]. Raw materials of the stu-
died pyrolysis plant are agricultural residues. In this study, the
consumption of energy or material in a agriculture process is
allocated according to market value of cotton and cotton stalk, rice
and rice husk. The data of the studied biomass pyrolysis plant are
collected and calculated in 2012, and according to the project
report, the average price of biomass raw material is 200 yuan/t. In
2012, the average price of cotton and rice is 20,400 yuan/t [112]
and 2500 yuan/t [113] in Hubei Province. The calculation of GHG
emissions of the agriculture process for biomass pyrolysis plant
are listed in Table 8. If the agriculture process is included, the GHG
emission intensity of the plant will increase to 1.56E�02 kg CO2-
eq/MJ, which only increased 0.89%. Besides, GHG emissions of
different raw materials in the agriculture process are shown in
Fig. 10.
5. Conclusions

Greenhouse gas emission levels have essential implications for
the biomass-based pyrolysis system and play an integral role in
project design and decision making. This study focuses on the GHG
emissions of the Tianmen, Hubei Province plant in China, a
biomass-based pyrolysis plant generating three products, syngas,
biochar and bio-oil. Production of biochar by the pyrolysis system
generates a significant effect on greenhouse reduction eenhouse
gas reduction [89,114,115]. The study revealed that if all generated
biochar was burned for energy, the GHG emissions intensity of the
studied plant would be 1.55E–02 kg CO2-eq/MJ, a lower level
among the GHG intensity spectrum of biomass thermal conversion
systems. [89–91]. However, if all biochar was returned to the field,
the net GHG emissions intensity would be negative, evaluated as
�6.11E–02 kg CO2-eq/MJ. According to statistics in the 12th Five-
Year Plan of China, 460 million t of biomass resources were uti-
lizable in 2010, but only 2.4 million t was consumed. According to
statistics in the 12th Five-Year Plan of China, 460 million t of
biomass resources were utilizable in 2010, but only 2.4 million t
was consumed [3]. If half of the biomass was used for biochar
production by pyrolysis, approximately 0.26 million t biochar
would be produced and, assuming all biochar returns to the field,
9.43Eþ05 t CO2-eq reduction would occur.

Results also indicate that GHG emissions of the studied plant
primarily arise from the electricity consuming operation and
maintenance process. Utilization of exhaust heat was proposed for
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electricity consumption reduction within the fixed-bed pyrolysis
system and was found to reduce the total GHG emission by 14.52%
[116]. Furthermore, due to the coal dominated electricity genera-
tion structure in China, electricity generation process is the largest
contributor to the total GHG emissions [117–119]. Results indicate
that if the proportion of thermal power decreases, the total GHG
emissions of the system would reduce rapidly. If all electricity is
generated from hydropower, the GHG emissions are 2.01Eþ03 t
CO2-eq, which leading to a 75.42% GHG reduction.

Additionally, analysis of transportation distance reveals that
when the transportation distance increases from 0 to 200 km,
GHG emissions increase from 8.10Eþ03 to 8.29Eþ03 t CO2-eq,
leading to a 2.34% GHG emission, thus increase of transportation
distance places minimal effect on total GHG emissions.

Biomass-based fixed-bed pyrolysis offers potential for sig-
nificant GHG reduction under optimized conditions, ultimately
contributing to vital reductions in overall GHG emissions as
widespread urbanization continues in China.
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